摘 要:塔里木盆地山前某構造沉積巨厚礫石層,鉆井液鉆井存在著鉆速低、鉆頭消耗多等問題,而采用空氣鉆井來提速又面臨井斜控制和井眼失穩兩大技術難題。為此,在大量試驗研究基礎上提出了空氣鉆井的實施技術方案。根據最小動能法判斷準則,落實不同條件下的合理注氣量;應用連續循環空氣鉆井技術避免沉砂卡鉆,延長鉆井進尺,提高鉆井時效;基于鉆具動力學特性分析,提出空氣鉆井動力學防斜技術,優選出“彎短節+雙扶正器”防斜鉆具組合;優配“二強二高一低”(強抑制、強封堵、高防塌性、高潤滑性、低濾失)的聚磺一KCl轉換用鉆井液體系,給出鉆井液轉換工藝措施。通過在A井現場試驗,空氣鉆井井段最大井斜角僅2.19°,僅用2d時間就順利完成鉆井液轉換作業,同比鉆井液鉆井機械鉆速提高3~5倍,節省鉆井時間119d,取得良好應用效果,該配套技術的形成可對該區深部天然氣勘探鉆井提速發揮積極的推動作用。
關鍵詞:礫石層 空氣鉆井 井斜控制 注氣量 連續循環鉆井 動力學特性 鉆井液轉換
Technologies in enhancing the ROP by air drilling through the piedmont gravel layers with huge thickness in the Tarim Basin
Abstract:Heavily thick gravel layers were deposited in a piedmont gas reservoir in the Tarim Basin,where mud drilling has been encountered by a low ROP,high bit wear and so on.A high ROP was expected to achieve by air drilling,however,well deviation control and wellbore instability were two technical bottlenecking problems.In view of this,based on a huge number of experimental studies,a technical scheme was proposed for air drilling in this study area.First,reasonable air injection rates were determined at different downhole conditions by use of the minimum kinetic energy judgment criteria.Second,the continuous circulating air drilling technology was employed to prevent solids setting sticking,thus to extend footage and increase drilling efficiency.Third,the dynamic air drilling deviation control technology was recommended after the analysis of BHA dynamic characteristics,on this basis,the optimal design was suggested of the”bent nipple+double centralizer”BHA.Fourth,the polysulfonate KCL converting fluid system was optimized with strong inhibition and sealing performance,high anti collapse ability and lubricitv,and low filtration,and some drilling fluid conversion measures were also figured out.In a pilot case of air drilling with the above technical scheme in Well A,the maximum deviation angle was only 2.19° and the drilling fluid was converted within 2days;the ROP was enhanced by 3 to 5 times and the drilling time was saved by 119days compared with mud drilling.This supporting technology will play a positive role in improving the drilling speed in this study area.
Keywords:gravel foreland,air drilling,deviation control,air injection rate,continuous circulating drilling,dynamic characteristics,fltujd conversion
塔里木盆地山前某構造儲層埋藏深度大于7000m,上部沉積了巨厚的礫石層,鉆井液鉆井鉆速低、鉆頭消耗多、周期長,嚴重制約了勘探開發效益,開展空氣鉆井提速具有廣闊前景。通過前期氣體鉆井現場應用表明,山前構造礫石層空氣鉆井時存在井壁失穩、井斜控制難度大等技術瓶頸,筆者通過開展注入參數優化設計、連續循環鉆井技術、動力學防斜技術及鉆井液轉換技術研究,形成了山前構造礫石層空氣鉆井配套技術,通過在A井現場試驗,取得良好應用效果。
1 空氣注入參數優化
采用最小動能法判斷標準:l]確定合理灃氣量,該方法認為:當環空空氣最小返速不小于15.24m/s時,能將井底產生的巖屑攜帶至地面。根據實際鉆屑情況,模擬計算了Æ431.8mm和Æ333.4mm兩種井眼尺寸,考慮不同井眼擴大率,不同巖屑顆粒尺寸條件下的最小環空返速,參照最小動能法判斷標準,確定出合理注氣量(表1,圖1、2)。
根據最小動能法判斷準則,給出不同條件下合理注氣量(圖1、2)。綜合考慮地面海拔影響,需要配套500m3/min空氣注入設備。
2 連續循環鉆井技術
連續循環鉆井技術實現了在接單根、起下鉆期間保持介質的連續循環[2-5],避免井底積液引起的井壁垮塌,降低卡鉆風險,提高鉆井效率。
閥式連續循環系統[6]主要由兩部分組成:連續循環閥、地面切換裝置(圖3)。其工作原理為:預先將連續循環閥配在單根頂端,連接一條側循環管線至連續循環閥,在接單根、起下鉆時通過地面切換裝置對正循環通道和側循環通道進行切換,保持鉆井介質始終處于連續循環狀態。
礫石層空氣鉆井過程中,易發生井徑擴大,導致攜砂困難,存在沉砂卡鉆風險,甚至可能因沉砂過多而提前結束空氣鉆井作業。采用連續循環鉆井技術,具備以下優點。
2.1 節省接立柱時間,提高鉆井效率
常規空氣鉆井采用“接雙根”方式進行,連續循環空氣鉆井接立柱程序簡捷,節省了泄壓、倒換鉆具、壓力恢復等工序,相比常規“接立柱”節省時間近60%。
常規接立柱程序:劃眼、循環清砂®上提鉆具至上單根出轉盤面®停止注氣、泄壓®倒出上單根®接立柱®注氣,待立壓恢復至正常壓力值后,劃眼、鉆進。
連續循環鉆井接立柱程序:劃眼®倒換閘閥,建立側循環通道®接立柱®倒換閘閥,建立主循環通道,恢復鉆進。
2.2 提高復雜井段起下鉆作業安全性
當井底沉砂多時,在沉砂堆積井段進行連續循環起下鉆作業,可避免沉砂卡鉆,提高鉆井安全性。
2.3 延長空氣鉆井進尺
井底沉砂過多可導致提前結束空氣鉆井,而采用連續循環鉆井技術可避免沉砂卡鉆,滿足空氣鉆井安全作業需求,延長空氣鉆井進尺。
3 井斜控制
塔里木山前高陡構造井斜控制[7]是空氣鉆井難題之一,空氣錘防斜技術[8]難以奏效,基于鉆具動力學特性分析,提出一種“彎鉆具動力學防斜技術”[9-10],對4種不同鉆具組合的動態鐘擺力進行了分析,優選出Æ431.8mm和Æ333.4mm井眼的“彎短節+雙扶正器”的動力學防斜鉆具組合(表2),其底部鉆具組成為:鉆頭+彎短節(a°)+Æ228.6mm鉆鋌+扶正器+Æ228.6mm鉆鋌+扶正器+Æ228.6mm鉆鋌……
4 鉆井液轉換
針對塔里木山前礫石層鉆井液轉換過程中易發生井壁失穩、井漏[11-12]等難題,通過室內研究,形成了“強抑制、強封堵、高防塌性、高潤滑性、低濾失”特點的“二強二高一低”含油聚磺KCl鉆井液體系(表3),基本配方如下:3%~4%的膨潤土+0.1%~0.3%NaOH+0.05%~0.1%KPAM或80A51+2%~3%潤滑劑+3%~5%SMP-1+3%~4%SPNH+2%~3%YL-80+0.5%~0.6%PAC-LV+2%~3%聚合醇+5%~6%柴油+1%~1.5%SP-80(占柴油體積)+3%~5%KC1和適量的加重劑。
該轉換用鉆井液體系的組成為:①特殊前置液,配方:油基潤濕反轉劑+柴油+氧化瀝青粉,利用油基潤濕反轉劑特性,改變巖石表面性質,變親水表面為憎水表面,阻止水分進入地層,防止井壁坍塌。②特殊堵漏漿,通過鉆井液中加入適量無滲透、聚合醇、陽離子乳化瀝青等處理劑來實現鉆井液的防漏作用。③含油聚磺一KCl鉆井液,具有“二強二高一低”特征。④舉砂液,建立井筒循環之后清潔井眼所用,通過高密度、高黏度的特點充分攜帶井筒巖屑。形成了一套適合塔里木山前礫石層地質特征的鉆井液轉換工藝技術(圖4),保障安全實施。
5 應用實例
塔里木山前某構造A井設計井深7200m,上部沉積巨厚礫石層(厚約5100m),空氣鉆井施工井段為Æ431.8mm井眼2502~3602m井段和Æ333.4mm井眼3602~4652m井段,累計進尺2150m,占設計井深29.86%,平均機械鉆速4.34m/h,鉆井周期僅49d,同比鉆井液鉆井提高鉆速3~5倍,節省鉆井時間119d。
5.1 連續循環鉆井系統應用
在Æ431.8mm井眼及Æ333.4mm井眼鉆進及通井劃眼全過程采用連續循環鉆井技術,連續循環鉆井系統運轉時間累計達921h,入井連續循環短節28只,滿足現場施工需求。本井采用連續循環鉆井技術,延長了空氣鉆井進尺,在Æ333.4mm井眼空氣鉆井期間,從3602m鉆進至3740m,井底沉砂達30m,采用連續循環鉆井技術順利鉆至井深4652m,延長進尺912m。
5.2 井斜控制
該井在Æ431.8mm井眼及Æ333.4mm井眼采用“彎短節+雙扶正器”鉆具組合(表4),井斜控制效果好,最大井斜角僅2.19°(圖5),滿足了鉆井工程要求。
5.3 鉆井液轉換
本井Æ333.4mm井眼鉆至井深4652m結束空氣鉆井,起鉆更換“光鉆桿+銑齒”鉆具組合下鉆至套管鞋3592m,依次替入潤濕反轉劑31.2m3,特殊堵漏漿60m3,密度1.40g/cm3聚磺-KC1混油鉆井液486.8m3,出口見返,再替入攜砂漿清潔井眼,僅用2d時間完成鉆井液轉換作業,未出現井塌、井漏井下復雜。
6 結論
1)連續循環鉆井技術避免沉砂卡鉆,延長鉆井進尺,提高鉆井時效,成為塔里木山前構造礫石層空氣鉆井重要配套技術之一。
2)基于鉆具動力學理論研究,提出空氣鉆井動力學防斜技術,優選出“彎短節+雙扶正器”防斜鉆具組合,為山前高陡構造空氣鉆井井斜控制提供了一條有效途徑。
3)優配了“二強二高一低”的含油聚磺-KCl轉換用鉆井液體系,形成了適合山前礫石層地質特征的鉆井液轉換工藝技術,保障鉆井液轉換作業的安全性、高效性。
4)通過在A井空氣鉆井現場試驗,提高機械鉆速3~5倍,節省鉆井時間119d,井斜滿足工程要求,取得良好應用效果。
參考文獻
[1]王存新,孟英峰,鄧虎,等.氣體鉆井注氣量計算方法研究進展[J].天然氣工業,2006,26(12):97-99.
WANG Cunxin,MENG Yingfeng,DENG Hu,et al.Study advances in gas volume requirement calculation for gas drilling[J].Natural Gas Industry,2006,26(12):97-99.
[2]AYLING L J,JENNER J W,ELKINS H.Continuous circulation drilling[c]∥paper l4269 presented at the Off-shore Technology Conference,6-9 May 2002,Houston,Texas,USA.Houston:OTC,2002.
[3]周爽.連續循環鉆井[J].國外油田工程,2003,19(10):25-26.
ZHOU Shuang.Continuous circulation drilling technology[J].Foreign Oilfield Engineering,2003,19(10):25-26.
[4]JENNER J W,ELKINS H L,SPRINGETT F,ct al.The continuous circulation system:An advance in constant pressure drilling[J].SPE Drilling&Completion,2005,20(3):168-178.
[5]TORSVOLL A,HORSRUD P,REIMERS N.Continuous circulation during drilling utilizing a drill string integrated valve the continuous circulation valve[C]//paper 98947-MS presenled at the IADC/SPE Drilling Conference,21-23 February 2006,Miami,Florida,USA.New York:SPE,2006.
[6]許期聰,鄧虎,周長虹,等.連續循環閥氣體鉆井技術及其現場試驗[J].天然氣工業,2013,33(8):83-87.
XU Qicong,DENG Hu,ZHOU Changhong,et al.Field tests of gas drilling technology with continuous circulation valves[J].Natural Gas Industry,2013,33(8):83-87.
[7]項德貴,葛云華,孫夢慈,等.空氣鉆井井斜控制問題的探討[J].鉆采工藝,2005,28(5):1-3.
XIANG Degui,GE Yunhua,SUN Mengci,et al.Discussion on the wellbore deviation controlling in air drilling[J].Drilling&Production Technology,2005,28(5):1-3.
[8]鄧虎,伍賢柱,余銳.氣體鉆井井斜的原因及防斜技術[J].天然氣工業,2009,29(1):58-60.
DENG Hu,WU Xianzhu,YU Rui.Causes of well deviation during gas drilling and its control[J].Natural Gas Industry,2009,29(1):58-60.
[9]狄勤豐,朱衛平,姚建林,等.預彎曲動力學防斜打快鉆具組合動力學模型[J].石油學報,2007,28(6):118—121.
DI Qinfeng,ZHU Weiping,YAO Jianlin,et al.Dynamic model of Bottom hole assembly used in pre-bending dynamic vertical and fast drilling technology[J].Acta Petrolei Sinica,2007,28(6):118-121.
[10]狄勤豐,朱衛平,姚建林,等.空氣鉆井鉆具動力學特征及井斜機理研究[J].石油學報,2008,29(6):917-920.
DI Qinfeng,ZHU Weiping,YAO Jianlin,et al.Dynamic features of bottom hole assembly and borehole deviation mechanism in air drilling[J].Acta Petrolei Sinica,2008,29(6):917-920.
[11]周成華,王平全,張珍,等.氣體鉆井替換過程中保持井壁穩定的對策[J].鉆采工藝,2007,30(5):1-3.
ZHOU Chenghua,WANG Pingquan,ZHANG Zhen,et al.Countermeasure for protecting wellbore stability while gas-liquid transformation during drilling[J].Drilling&Production Technology,2007,30(5):1-3.
[12]劉翔,王娟,金承平.氣體鉆井轉化常規鉆井的替入鉆井液技術[J].鉆采工藝,2008,31(4):37-39.
LIU Xiang,WANG Juan,JIN Chengping.Drilling fluid technique of gas drilling translation into conventional drilling[J].Drilling&Production Technology,2008,31(4):37-39.
本文作者:鄧虎 胥志雄 王懷金 許期聰 鄧柯
作者單位:中國石油川慶鉆探工程公司鉆采工程技術研究院
中國石油塔里木油田公司
中國石油西南油氣田公司
中國石油川慶鉆探工程公司國際工程公司
您可以選擇一種方式贊助本站
支付寶轉賬贊助
微信轉賬贊助